Properties of sparsely connected excitatory neural networks.

نویسندگان

  • Barkai
  • Kanter
  • Sompolinsky
چکیده

The dynamic properties of large, sparsely connected neural networks are investigated. The input connections of each neuron are chosen at random with an average connections per neuron C that does not increase with the size of the network. The neurons are binary elements that evolve according to a stochastic single-spin-flip dynamics. Similar networks have been introduced and studied by Derrida, Gardner, and Zippelius [Europhys. Lett. 4, 167 (1987)] in the context of associative memory and automata. We investigate cases where some of the neurons receive inputs only from external sources and not from the network. These inputs may be random or uniform. The relationship between the geometric properties of the networks and their collective dynamic behavior is studied. Macroscopic clusters as well as internal feedback loops appear when C & 1. However, the dynamic feedback is weak as the length of the typical loops is of the order of ln N. As a result, cooperative long-time behavior appears only at a value of C, C =Co, that is higher than unity. The cooperative behavior is manifested by the existence of two distinct equilibrium phases with opposite magnetizations. In addition, when the inputs are uniform they determine uniquely the state of the network, thus destroying its bistability. Only at a higher value of C, C = C& & Co, a large fraction of the neurons is completely screened from the dynamic influence of the inputs, leading to a bistable behavior even in the presence of the inputs. These results imply that the performance of these networks as input-output systems may depend critically on the degree of connectivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Encoding in a network of sparsely connected spiking neurons: application to locust olfaction

Electrophysiological measurements in the locust antennal lobe have suggested that the odor could be encoded spatially and temporally during the network oscillation in the firing patterns of the excitatory cells. Interested by the mechanisms responsible for such a spatial code we have found that, for a sufficient level of inhibition, strong network oscillations appear in corresponding networks o...

متن کامل

Sparsely-Connected Neural Networks: Towards Efficient VLSI Implementation of Deep Neural Networks

Recently deep neural networks have received considerable attention due to their ability to extract and represent high-level abstractions in data sets. Deep neural networks such as fully-connected and convolutional neural networks have shown excellent performance on a wide range of recognition and classification tasks. However, their hardware implementations currently suffer from large silicon a...

متن کامل

Noise Injection Into Inputs In Sparsely Connected Hopfield And Winner-take-all Neural Networks - Systems, Man and Cybernetics, Part B, IEEE Transactions on

In this paper, we show that noise injection into inputs in unsupervised learning neural networks does not improve their performance as it does in supervised learning neural networks. Specifically, we show that training noise degrades the classification ability of a sparsely connected version of the Hopfield neural network, whereas the performance of a sparsely connected winner-take-all neural n...

متن کامل

Noise injection into inputs in sparsely connected Hopfield and winner-take-all neural networks

In this paper, we show that noise injection into inputs in unsupervised learning neural networks does not improve their performance as it does in supervised learning neural networks. Specifically, we show that training noise degrades the classification ability of a sparsely connected version of the Hopfield neural network, whereas the performance of a sparsely connected winner-take-all neural n...

متن کامل

Cortical network modeling: analytical methods for firing rates and some properties of networks of LIF neurons.

The circuitry of cortical networks involves interacting populations of excitatory (E) and inhibitory (I) neurons whose relationships are now known to a large extent. Inputs to E- and I-cells may have their origins in remote or local cortical areas. We consider a rudimentary model involving E- and I-cells. One of our goals is to test an analytic approach to finding firing rates in neural network...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. A, Atomic, molecular, and optical physics

دوره 41 2  شماره 

صفحات  -

تاریخ انتشار 1990